34 research outputs found

    Complete genome sequence of bovine polyomavirus type 1 from aborted cattle, isolated in Belgium in 2014

    Get PDF
    &lt;p&gt;The complete and fully annotated genome sequence of a bovine polyomavirus type 1 (BPyV/BEL/1/2014) from aborted cattle was assembled from a metagenomics data set. The 4,697-bp circular dsDNA genome contains 6 protein-coding genes. Bovine polyomavirus is unlikely to be causally related to the abortion cases. &lt;/p&gt;</p

    Targeted Whole Genome Sequencing of the Capripoxvirus Genome from Clinical Tissue Samples and Lyophilized Vaccine Batches.

    No full text
    Diseases caused by Capripoxviruses (CaPVs) are of great economic importance in sheep, goats, and cattle. Since CaPV strains are serologically indistinguishable and genetically highly homologous, typing of closely related strains can only be achieved by whole-genome sequencing. In this chapter, we describe a robust, cost-effective, and widely applicable protocol for reconstructing (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches in less than a week. Taking advantage of the genetic similarity of CaPVs, a set of pan-CaPVs long-range PCRs was developed that covers the entire genome with only a limited number of tiled amplicons. The resulting amplicons can be sequenced on all currently available high-throughput sequencing platforms. As an example, we have included a detailed protocol for performing nanopore sequencing and a pipeline for assembling the resulting tiled amplicon&nbsp;data.</p

    Het Frans als lingua franca in de Lage Landen (1800-1914)

    No full text
    status: publishe

    Using genomics for surveillance of veterinary infectious agents

    No full text

    WGS- versus ORF5-Based Typing of PRRSV: A Belgian Case Study.

    No full text
    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most widespread and economically devastating diseases in the swine industry. Typing circulating PRRSV strains by means of sequencing is crucial for developing adequate control strategies. Most genetic studies only target the highly variable open reading frame (ORF) 5, for which an extensive database is available. In this study, we performed whole-genome sequencing (WGS) on a collection of 124 PRRSV-1 positive serum samples that were collected over a 5-year period (2015-2019) in Belgium. Our results show that (nearly) complete PRRSV genomes can be obtained directly from serum samples with a high success rate. Analysis of the coding regions confirmed the exceptionally high genetic diversity, even among Belgian PRRSV-1 strains. To gain more insight into the added value of WGS, we performed phylogenetic cluster analyses on separate ORF datasets as well as on a single, concatenated dataset (CDS) containing all ORFs. A comparison between the CDS and ORF clustering schemes revealed numerous discrepancies. To explain these differences, we performed a large-scale recombination analysis, which allowed us to identify a large number of potential recombination events that were scattered across the genome. As PRRSV does not contain typical recombination hot-spots, typing PRRSV strains based on a single ORF is not recommended. Although the typing accuracy can be improved by including multiple regions, our results show that the full genetic diversity among PRRSV strains can only be captured by analysing (nearly) complete genomes. Finally, we also identified several vaccine-derived recombinant strains, which once more raises the question of the safety of these&nbsp;vaccines.</p

    A robust, cost-effective and widely applicable whole-genome sequencing protocol for capripoxviruses

    No full text
    The diseases caused by capripoxviruses (CaPVs) are of major economic concern in sheep, goat and cattle as they are inexorably spreading into non-endemic regions. As CaPV strains are serologically indistinguishable and genetically highly homologous, typing closely related strains can only be achieved by whole genome sequencing. Unfortunately the number of publicly available genomes remains low as most sequencing methods rely on virus isolation. Therefore, we developed a robust, cost-effective and widely applicable method that allows to generate (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches. A set of pan-CaPVs long-range PCRs spanning the entire genome was designed to generate PCR amplicons that can be sequenced on commonly used high-throughput sequencing platforms: MiSeq (Illumina), RSII (PacBio) and MinION (Oxford Nanopore Technologies). The robustness of the LR-PCR strategy was evaluated for all 3 members of CaPV directly from a variety of samples, including clinical samples (N = 7), vaccine batches (N = 6), and virus isolates (N = 2). The sequencing method described here allows to reconstruct (nearly) complete CaPV genomes in less than a week and will aid researchers studying closely-related CaPV strains worldwide

    Complete Genome Sequence of Capripoxvirus Strain KSGP 0240 from a Commercial Live Attenuated Vaccine

    No full text
    Capripoxviruses cause economically important diseases in domestic ruminants in regions endemic for these viruses. We report here the complete genome sequence of the KSGP 0240 vaccine strain from the live attenuated vaccine Kenyavac (JOVAC)

    Complete Genome Sequence of the Goatpox Virus Strain Gorgan Obtained Directly from a Commercial Live Attenuated Vaccine

    No full text
    This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre)
    corecore